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On basis of the film model of crystal growth the relation 1 = to (1 + az) has been derived which 
describes the dependence of the linear growth rate on crystal size as a function of the dimen
sionless residence time of crystals z. For the perfectly stirred (MSMPR) crystalliser were then 
derived relations for the reduced population density of crystals nucleation rate, mean crystal 
size and distribution of crystal sizes. For very small values of the parameter a all derived relations 
give numerical values close to those satisfying the McCabe ~L-Iaw. 

The computation of quantItIes which are characterizing the perfectly mixed 
crystalliser is usually based on assumption that the crystal growth is controlled 
by the McCabe AL-law i.e. that the rate of crystal growth is independent of their 
size2 - 4 •9 . Nevertheless, there exists a number of experimental studies whose results 
at lea:: t point to the possibility of interpretation by use of deviations from the AIAaw. 
Therefore the endeavour of some authors to generalise the methodics used in com
putation of the crystallisers or distribution of crystal sizes also in cases when the 
McCabe AL-law ist not satisfied, is not surprising. For expression of the dependence 
of the growth rate of crystals on their size, fully empirical relations of the type1

,4 

L = Lo(1 + yL)b are usually used, whose mechanical application enables correla
tion of experimental data but cover the very origin of the dependence of growth 
rate on the size of crystals, i.e. the differences in the relative rate between the crystal 
and the solution3

• An attempt is made here to derive the relation which is consistent 
with the given model concept and to apply it to an actual case of the MSMPR crystal
liser. 

THEORETICAL 

The derivation of relations expressing the effect of the size of crystals L on their growth 
rate is based on assumption of the film theory according to which the mass must be 
transferred at first to the layer of solution adhering to the crystal surface (in the stirred 
medium a very fast process), next transferred by diffusion through tbis diffusion 

Present address: Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 
Prague 6. 

Collection Czechoslov. Chern. Commun. [Vol. 44) (1979) 



2174 Nyvlt: 

layer with the thickness fJ to the surface of crystals 

rnG = D A(w - wJ/fJ (1) 

and finally built into the crystal lattice 

(2) 

By elimination of the unknown concentration close to the crystal surface Wj, we obtain 
the differential equation 5,6 

rna = k j A(Aw - rna fJ/ DA)i 

whose solution for i = 1 is 

rnG = kG A Aw, 

and for i > 1 the approximations.6 holds 

(3) 

(4a) 

(4b) 

(5) 

Relation for the dependence of the growth rate of crystals on flow conditions 
of the solut'ion is frequently3 used in literature in the form 

(6) 

where Sh = kG LI D and in case ~he~ the controlling step of the crystallisation is 
diffusion(th~ growth rate can depend on the size of crystals) Sh= LID; Re = uL/v 
and Sc = v/D. In the Reynolds number u represents the relative velocity between 
the crystal and solution. This velocity can be expressed for very small particles 7 

by the Stokes equation u = gL2 Ae/181] and for particles of the size up to 0·5 mm 
by equation3

•
8 

and finally, for particles larger than l'Smhl by equation3
•
8 

Thus there holds u '" LO. 5 up to u '" L2. Eq. (6) is then simplified to the form 
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(7) 

while the values of exponent b can be within the interval bE (0'75; 1·5). 
After substitution into relation (4b) and for the condition Djb ~ k j the relation is 
obtained 

(8) 

where 2DjL = kGO is the growth rate constant of very small particles. Eg. (8) can be 
formally arranged for the non-zero size of initial crystals9 into the form 

(9) 

where 

The linear growth rate Lis directly proportional 2 to the growth rate constant of crys
tals kG and thus there holds 

(10) 

The crystals population density balance for the continuous, perfectly stirred crystal
liser is reduced into the form4 

d(nL)jdL+ nlll = o. (11) 

If the growth rate of crystals ,L, is independent of their size, L, the trivial solution of 
Eg. (11) is 

(12) 

For L depending on the size of crystals according to Eq. (10) there results from Eq. 
(11) 

and by its solution the following relation is obtained 

(13) 

The integral in Eg. (13) can be solved in usual manner for certain values of b only, 
so that for individual possible cases the relations are obtained 

Collect,ion Czechoslov. Chern. Commun. [Vol. 44J [19791 



2176 

b = 0·5: 

b = 1·0: 

b = 1·5: 

b = 2·0: 

In (njn ) = 2 {~In (ZI/2 + a-
1

/
3
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(14a) 

(14b) 

(14c) 

(14d) 

and finally for b = 0 

(14c) 

The dependences (14) are for a = 0·25 plotted in Fig. 1. Even if in the region of higher 
values of z the individual curves already slightly differ a great mistake is not made 
if for all crystal sizes a single value b = 1 is considered. The other dependences 
of all curves are practically identical for smaller values of a (a < 0'15). The popula
tion density of crystals can be thus expressed by the relation 

6 . 

n = nN . (1 + Qzt(1 +a)/a • (15) 

z 10 

FIG.l 

Logarithm of Relative Population Density 
of Crystals in Dependence on Their Size 
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Comparison of the values calculated from Eq. (I5) with the normalised population 
densities n/nN = exp (-z) calculated for the condition L =F L(L), is made in Table r. 
It is obvious from this Table, that for small values of a the values of expression (15) 
in accordance with expectations are approaching those of the theoretical relation (12). 

For total mass of crystals kept in the continuous stirred crystalliser we can write2
,4 

(16) 

If we substitute into this Eq. for L = 4 + zLoil for n(L) Eq. (15): for dL = Loll dz 
and finally for LN/Loil = zw, after arrangement, the relation is obtained 

( 17) 

which can be integrated by usual methods for integer values of (a + l)ja > 4, i.e. 
for some definite values of a < 1/3. 

TABLE I 

Normalized Population Density of Crystals n/nN' 104 Calculated from Eq. (15) and for the 
Condition L '*' i(L) (a = 0) 

z a= 0 a=O'OOOla=O'OOI a = O'OI a=0·05 a=0'10 a=0'15 a=0'20 a=0'25 a= 0·30 

010000 10000 10 000 10 000 10 000 10000 10000 10000 10000 10000 
3678 3678 3676 3660 3589 3504 3424 3348 3276 3208 
1 353 1 353 1 353 1 353 1 351 1345 1 337 1328 1316 1304 

497 497 498 505 531 557 579 596 609 619 
183 183 183 190 317 246 272 294 312 328 

67 67 67 72 92 115 136 156 173 188 
24 24 25 27 40 56 72 88 102 115 

9 10 18 29 40 52 63 74 
4 15 23 32 41 49 

9 1 1 4 14 20 27 34 
10 0·4 0·4 0·4 0·6 2 4 13 19 24 
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If we denote (a + 1)/a = m, we obtain 

m - n CI. (t t /a)4 [ (1 - aZN)3 _ 3(1-:- aZN)2 , 
e - Nee 0 1 (m'- 1)(1 + az)m-l (m _ 2)(1 + az)m -2 + 

+ 3(1 - aZN) _ 1 ] '" (17a) 
(m - 3) (1 + az)m - 3 (m - 4) (1 + az)m-4 0 

and thus 

_ ,(t '''I )4 [_1 __ 3P. - azN)3( ,,-1 _-_az-'..:N~)2 me - nNCl.Qe 0 '1 a + -
, (m - 4) (m -,- 3) (m - 2) 

_ (1 - aZN,)3] , (18) 
(m - 1) 

Relation (18) should be comparable for small values of a with the relation9 for com
putation of the concentration of suspension me with t '# teL) 

(19) 

Comparison is performed in Table II where values of expressions 

TABLE II 

Values a4 !(a, zN) and 6!(zN) Calculated from Eqs (20) and (21) 

zN a = O a = 0,001 a = 0,01 a = 0,02 a = 0,05 a = 0,10 a = 0,25 

0·0 6·0000 6,0360 6·3755 6,7846 , 8,2559 11 ·9047 64·0000 
0'5 9·8749 9·9210 10·3502 10·8637 12·6791 17·0297 73·1250 
1'0 16·0000 16,0570 16·5901 17·2234 19,4313 24,5714 85'0000 
1·5 25·1250 25 ·1942 25·8451 ' 26·6137 29·2625 35·2797 100·3750 
2·0 38·0000 38·0840 38·8653 39·7846 42·9226 49·9047 120·0000 
2'5 55-3750 55-4746 56·4006 57·4861 61 ·1616 69'1964 144·6250 
3·0 78·0000 78·1170 79,2011 80·4683 84'7296 93·9047 175,0000 
3,5 106·6250 106,7601 108,0167 109'4810 114·3765 124·7797 211·8750 
4·0 142·0000 142·1560 143,5975 145·2744 150,8524 162'5714 256,0000 
4·5 184·8750 ' 185'0524 186,6935 188,5984 194,9072 208,0297 308,1250 
5·0 236·0000 236'2010 238,0545 240·2029 247·2910 261·9047 369·0000 
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a a, Z N - -- - + -'----'-4j( ) _ [1 3{1 - aZN) 3{1 - azN)2 
111-4 111-3 111-2 

and 

(21) 

are given. It is obvious that for a ...... 0 both relations are giving identical results 
again. By integration of Eq. (17) in the limits from Z = Z up to z = 00 the relation 
is obtained for the mass of oversize fraction on the sieve with the apperture size L = 

LN + zLot, 

The oversize expressed in mass pelcentage is obtained from Eqs (22) and (18) 

M(z) = 100. mb)/mc . (23) 

From the condition for the inflex point (i .e. maximum of the distributive curve) 
IesuIts 

z = [3 - zN(l + a)]/(l - 2a), (24) 

so that the dimensionless mean residence time of crystals can become equal to the 
limiting values z = 3 - ZN (for a = 0) to z = 6-2·5zN (for a = 0·25). 
The values of z corresponding to frequent values of ZN are given in Table III. The 
crystal size distribution as calculated from Eq. (23) is plotted in Figs 2 and 3 in linear
ized coordinatcs1o corresponding to the relation (12) for different values a (Fig. 2) 
and ZN (Fig. 3). " 

From Eq. (12) relations were derived9 for design of the continuous stirred crystal
liser at the assumption of validity of the McCabe ~L-law. First of aJl; the equation 
for calculation of the mean sIze' of crystals L 

which, as far as the growth is concerned does not obey the McCabe ~L-law, takes 
the form 
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with the value 

(26) 

TABLE III 
Dimensionless Mean Residence Time of Crystals in Crystalliser z and Corresponding Oversize 
Fractions M(z ) 

ZN = 0 zN = 0·5 zN = 1·0 zN = 2·0 
a 

M(z) Z 

0 3·0000 64·70 
0·0001 3·0006 62·83 2·5004 
0·001 3·0060 64·80 2·5045 
0 ·005 3·0303 65·06 2·5227 
0·01 3·0612 65·40 2·5459 
·0·05- 3'3333 68·22 2·7500 
0·10 3'7500 72-06 3·0625 
0·15 4·2857 76·34 3·4644 
0·20 5·0000 81'25 4·0000 
0·25 6·0000 87·04 4·7500 

1r-------,--------.~----T> 
M(L! 

2 

FIG. 2 

0=0 0-01 
005 

Distribution of Crystal Sizes for zN = 0 
and Different Values of Parameter a 

M(z) 

64·20 
64·90 
65·17 
65·51 
68·32 
72·13 
76·40 
81·29 
87·06 

M(Z) Z M(Z) 

2·0003 71·33 1'0000 76·84 
2·0030 66·04 1·0000 75·57 
2·0151 66·30 1·0000 75-83 
2·0306 66·62 1·0000 76·14 
2·1666 69·32 1·0000 78·68 
2·3750 72-99 1'0000 81 ·96 
2·6428 77-09 1·0000 85·39 
3·0000 81 ·80 1·0000 89·00 
3·5000 87-38 1·0000 92·84 

M(L! 

30 

z 15 

FIG. 3 

Distribution of Crystal Sizes for a = 0·005 
and Different Values zN 
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and furthermore equation for calculation of the nucleation rate 

(27a) 

takes the form 

(27b) 

CONCLUSIONS 

Equation 

(28) 

which is expressing the dependence of the linear growth rate on the size of crystals 
was derived on basis of the film model usually applied to theoretical interpret.ation 
of the growth rate of crystals. It enables a relatively simple expression of the size 
of crystals and by use of the population density balance of crystals in the perfectly 
stirred crystalliser also that of the derived quantities: population density of initial 
crystals, nucleation rate, mean size of product crystals and distribution of crystal 
sizes. In agreement with the data of other authors1 .4, which employ for correlation 
quite empirical relations, the distribution of crystals is expressed in linearized co
ordinates1o, or as the dependence of logarithm of the reduced population density 
of crystals on their non-linear size but, with decreasing value of the parameler a, 
is approaching the values calculated for the growth rate of crystals obeying the 
McCabe ilL-law. 

LIST OF SYMBOLS 

A crystal surface 
Q 1 constant 
a constant 
B system constant 
b constant 
C constant 

exponent of secondary nucleation 
D diffusion coefficient 
f(ZN) function defined by Eq. (21) 
f(a, ZN) function defined by Eq. (20) 
9 gravitational acceleration 
g order of kinetic equation of crystal growth 
i order of kinetic equation for incorporation of particles into the crystal lattice 
k j rate constant of incorporation of particles into the crystal lattice 
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kG rate constant of crystal growth 
kGO rate constant of crystal growth for a = 0 
L size of crystals 
LN initial size of crystals 
L mean size of crystals 
L linear growth rate 
Lo linear growth rate of initial crystals 
M( z) oversize crystal fraction with the size corresponding to z 
m = (a + l)/a COnstant 
me concentration of suspension, mass of crystals 
me( z) mass of oversize fraction 
me specific output of the crystaIIiser 
mG mass rate of crystal growth 
mN mass nucleation rate 
n order of kinetic equation of nucleation 
n population density of crystals ' 
liN population density of initial crystals 
Re = uL/v Reynolds number 
Sc = , v/ D Schmidt number 
Sh = kG L/ D Sherwood number 
11 mean residence time of solution , 
u relative velocity between the solution and of the crystal (slip velocity) 
W concentration of solution ' , 
WI concentration close to the surface of crystals 
Weq solubility 
~W supersaturation 
z dimensionless residence time of crystals 
ZN dimensionless size of initial crystals 
z mean residence time of crystals 
CI. volume shape factor 
o thickness of the diffusion layer 

constant 
11 dynamic viscosity 

kinematic viscosity 
(}e density of crystals 
(}I density of solution 
~(} = (}e - (}I 

Nyvlt: 
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